РАДИУС ИНЕРЦИИ - определение. Что такое РАДИУС ИНЕРЦИИ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое РАДИУС ИНЕРЦИИ - определение

ФИКТИВНАЯ СИЛА, ДЕЙСТВУЮЩАЯ В НЕИНЕРЦИАЛЬНОЙ СИСТЕМЕ ОТСЧЁТА
Инерции сила; Силы инерции; Фиктивная сила; Д’Аламберовы силы инерции; Эйлеровы силы инерции; Ньютоновы силы инерции; Д’Аламберова сила инерции; Эйлерова сила инерции; Ньютонова сила инерции; Псевдосила; Переносная сила инерции
  • ИСО]]) наблюдателей.
  • Наблюдатель, вращающийся вместе с каруселью, может объяснить отклонение кресел на аттракционе действием центробежной силы инерции

Радиус инерции      

величина ρ, имеющая размерность длины, с помощью которой Момент инерции тела относительно данной оси выражается формулой I = Мρ2, где М - масса тела. Например, для однородного шара Р. и. относительно оси, проходящей через его центр, равен R ≈ 0,632 R, где R - радиус шара.

РАДИУС ИНЕРЦИИ      
величина p, имеющая размерность длины, с помощью которой момент инерции тела относительно данной оси выражается через массу m тела равенством: I = mp2.
Сила инерции         
Си́ла ине́рции (также инерционная сила) — многозначное понятие, применяемое в механике по отношению к трём различным физическим величинам. Одна из них — «даламберова сила инерции» — вводится в инерциальных системах отсчёта для получения формальной возможности записи уравнений динамики в виде более простых уравнений статики.

Википедия

Сила инерции

Си́ла ине́рции (также инерционная сила) — многозначное понятие, применяемое в механике по отношению к трём различным физическим величинам. Одна из них — «даламберова сила инерции» — вводится в инерциальных системах отсчёта для получения формальной возможности записи уравнений динамики в виде более простых уравнений статики. Другая — «эйлерова сила инерции» — используется при рассмотрении движения тел в неинерциальных системах отсчёта. Наконец, третья — «ньютонова сила инерции» — сила противодействия, рассматриваемая в связи с третьим законом Ньютона.

Общим для всех трёх величин является их векторный характер и размерность силы. Кроме того, первые две величины объединяет возможность их использования в уравнениях движения, по форме совпадающих с уравнением второго закона Ньютона, а также их пропорциональность массе тел.